Ternary fission is a comparatively rare (0.2 to 0.4% of events) type of nuclear fission in which three charged products are produced rather than two. As in other nuclear fission processes, other uncharged particles such as multiple and are produced in ternary fission.
Ternary fission may happen during neutron-induced fission or in spontaneous fission (a type of radioactive decay). About 25% more ternary fission happens in spontaneous fission than in the same fission system formed after thermal neutron capture, https://web-docs.gsi.de/~wolle/FISSION/ternary/ternary.html Fraction ternary fission as a function of different Z and A in fissile isotopes. illustrating that these processes remain physically slightly different, even after the absorption of the neutron, possibly due to the extra energy present in the nuclear reaction system of thermal neutron-induced fission.
Quaternary fission, at 1 per 10 million fissions, is also known (see below).
In anywhere from 2 to 4 fissions per 1000 in a nuclear reactor, the alternative ternary fission process produces three positively charged fragments (plus neutrons, which are not charged and not counted in this reckoning). The smallest of the charged products may range from so small a charge and mass as a single proton (Z=1), up to as large a fragment as the nucleus of argon (Z=18).
Though particles as large as argon nuclei may be produced as the smaller (third) charged product in the usual ternary fission, the most common small fragments from ternary fission are helium-4 nuclei, which make up about 90% of the small fragments. This high incidence is related to the stability (high binding energy) of the alpha particle, which makes more energy available to the reaction. The second-most common particles produced in ternary fission are tritons (tritium nuclei), which make up 7% of the total small fragments, and the third-most are helium-6 nuclei (which decay in about 0.8 seconds to lithium-6). Protons and larger nuclei are in the small fraction (< 2%) which make up the remainder of the small charged products. The two larger charged particles from ternary fission, particularly when alphas are produced, are quite similar in size distribution to those produced in binary fission.
The other two larger fragments carry away, in their kinetic energies, the remainder of the fission kinetic energy (typically totalling ~ 170 MeV in heavy element fission) that does not appear as the 10 to 20 MeV kinetic energy carried away by the third smaller product. Thus, the larger fragments in ternary fission are each less energetic, by a typical 5 to 10 MeV, than they are seen to be in binary fission.
|
|